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ABSTRACT 

In this paper we consider whether the minimal normal filter on P~A, the 
club filter, can have strong properties like saturation, pre-saturation, or 
cardinal preserving. We prove in a number of cases that the answer is 

no. In the case of saturation, Foreman and Magidor prove the answer is 

always no (except in the case n = )~ = R1 and in this case saturation is 
known to be consistent). 

1. I n t r o d u c t i o n  

T h i s  p a p e r  g ives  a n u m b e r  of  p a r t i a l  r e su l t s  t o w a r d s  t h e  fo l lowing c o n j e c t u r e s .  

U n l e s s  o t h e r w i s e  n o t e d ,  n is a regular ,  u n c o u n t a b l e  c a r d i n a l  a n d  A is an  in f in i t e  

c a r d i n a l  ()~ >_ ~). 

CONJECTURE 1: The club filter on 72~)~ is not precipitous - -  unless )~ is regular. 
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CONJECTURE 2: T h e  c l u b / ~ l t e r  on 7)~A is not  pre-saturated untess ~ = R1 

and A is regular or a = A is weakly inaccessible. 

The corresponding conjecture for saturation has been established by Foreman 

and Magidor ([FM]): 

THEOREM (Foreman-Magidor): The  club t~lter on P~)~ is not saturated - -  unless 

t,g..~-)~ =R1. 

The results of section 2 of this paper are the authors' partial results towards the 

above theorem. Shortly after the results of this paper were announced, Foreman 
and Magidor proved the above theorem. Their paper gives a self-contained proof 

of the theorem. Also, in the case covered by Theorem 2.10, they establish the 

stronger result that  the club filter is not even k ++ saturated. 

Remarks:  

1. [She87] It is consistent that the club filter on R1 is saturated (assuming the 

consistency of a Woodin cardinal). 

2. [Git95] It is consistent that the club filter on ~, ~ weakly inaccessible, is 

pre-saturated (assuming the consistency of an up-repeat point). 

3. [Go192] If ~ is Woodin then, for every regular ~ (R1 < A < ~), 

V C°l(~'<~) ~ "the club filter on "P~I A is pre-saturated'.  

4. [Gol] If 5 is Woodin then, for every regular ~ < A (R1 < a < ~ < 5), 

V C°R~'<~) ~ "the club filter on P~A is precipitous". 

We now give our basic definitions and conventions. 

.T is a n o r m a l  f i l ter  on :P(A) if 

1. ~- C_ ~oP(,k) is a filter. 

2. (fine) V a C ) ~ { a C _ h  i a E a } E . T .  

3. (normal) If Ca • .T (a • A), then {a C_ A I V~ • a(a e Ca)} • F .  

Throughout this paper, t~lter will mean normal filter. 

~-+ =def {A C_ :P(£)] VC E ~- (C M A ¢ O)}. 

5 r+  has an associated partial ordering: A _< B iff A C_ B. 

A filter ~" on T'(A) is s a t u r a t e d  if every antichain in ~'+ has size < A. ~" is 

p r e - s a t u r a t e d  if, given antichains As (a < )~) and S E 3 v+, there is a T < S 

such that,  for all a < ~, I{A E AaI A M T  E ~+}l -< ~. 



Vol. 114, 1999 THE EXTENT OF STRENGTH IN THE CLUB FILTERS 255 

Forcing with ~ +  extends F to a V-normal, V-ultrafilter G--so we get a generic 

embedding j:  Y --+ Vlt(V, G) C V[G]. 

is p r e c i p i t o u s  if this ultrapower is always well-founded. If ~ is pre- 

saturated, then $- is precipitous and the ultrapower is closed under )~ sequences 

in V[G]. For more on the basic facts about generic embeddings, see [For86]. 

The club filter on P(A) (CF~,(~) or just CF) consists of all A C_ p(~)  such that  

3f :  )~<~ -+ ;~ with cl S C_ A (cl S = {a C_ )~1 f ''a<~ C_ a}). Sets in CF + are called 

stationary. CF is the smallest normal filter on P(A). 

If S E ~ + ,  then 5 ~ F S :de f  {A C_ p(A)] (3C E 9 ~) C M S C A} is a normal 

filter. If S E CF +, then the club filter on S, CF [ S, is the smallest normal filter 

on "P()~) containing S. 

P~,k =def {a C_ A I laI < a & aNa E a}. This definition is slightly non-standard: 

usually the condition "a N a E a" is dropped. The set P~)~ is stationary in P()~). 

If .~ is a filter on P()~) and iP~,k E :~, then ~- is a-complete, and so Vs E :P~;~, 

{a E P ~ ]  s C_ a} E ~-. 

If a C_ Ord, then cof(a) is the cofinality of the order type of a. A ~ ,~  sequence 

is a set (sa C_ a: a E T'~A} such that for all A C_ A, {a E P~AI a N A = s~} is 

stationary. 

The following fact was proved in [BTW77] for filters on cardinals. A similar 

proof works here. 

FACT 1.1: Assume ~- is a filter on P(;~). ~ is saturated iff for all filters ~ D 9 v, 

3S E $'+ such that ~ = ~ I S. 

COROLLARY 1.2: Suppose the club filter on S is saturated. Then every filter on 

S is saturated. 

2. S a t u r a t i o n  

One of the first results about the failure of saturation is a theorem of Shelah 

([She82], p. 440) that  says, for example, if ~v is a saturated filter on w2, then 

{~ < w21 cof(~) = Wl} E Jr. The proof of this uses the following result (with 

-- w2). We also use this result to get similar facts about saturated filters on 

P~)~. 

THEOREM 2.1 ([She82], [Cum97]): Assume V C_ W are inner models of ZFC, 

is a cardinal of V, p is a cardinal of W,  and )~+ = p+. Assuming (*), W 

cof(~)  = co l (p) .  

(*))~ is regular, or (k is singular and) there is a good scale on A, or (k is 

singular and) W is a )~ +-cc forcing extension of V. 
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See the next section for the definition of good scale. 

Definition 2.2: Sa :def {a C "~l cof(a) = cof(lal) }. 

THEOREM 2.3: Assume :F is a saturated filter on ~o(A). Then Sx E Y:. 

Proof: Suppose not. So we get j: V ~ M C_ V[G] with 7)(,k) \ S~ E G. Since 

7)(A) \ S~ E G, M ~ cof(A) ¢ cof(I,Xl). Since M ~ C_ M in V[G], V[G] 

cof(A) ¢ cof([AI). This contradicts Theorem 2.1 since V[G] is a A+-cc generic 

extension of V. I 

LEMMA 2.4: Assume n = p+, cof()~) < n, and cof()~) 7! cof(p). Then Sx n IP,~A 

is non-stationary. 

Proof: Let a C P~A. On a club, lal = p and so cof(lal) = cof(p). Since 

cof(A) < ~c, on a club sup(a) = A and so col(a) = cof(A). Therefore S;~ n P~A is 

non-stat ionary.  I 

COROLLARY 2.5: For n, ,,~ as above, there is no saturated filter on 7)~A. 

Remark: If n = p+ and cof(A) = cof(p), then S a n  P~A is club in T'~A. 

LEMMA 2.6: Assume n = p+ > lq2 and cof(A) _> n. Then S,x NT~,~A is stationary, 

co-stationary in 7)~ A. 

Proof: Let f :  A <~ -+ A. We may assume a E T'~ANcl S implies cof(lal) = cof(p). 

For any regular 5 < n we can build a continuous increasing chain of length 5 to 

find a E T'~A closed under  f with cof(a) = 5. Taking ~ = cof(p) shows tha t  

Sx N 7)~A is stationary. Taking 5 ~ cof(p) shows that  S a n  T'~A is co-s ta t ionary 

in 79~A. I 

COROLLARY 2.7: For n, A as above, the club filter on "P~A is not saturated. 

Remark: If ~ = Nt, then for all A >_ n, Sx N P~A is club in IP~A. 

LEMMA 2.8: Assume n is a regular limit cardinal and cof(A) ¢ n. Then S~NP~A 

is stationary, co-stationary in P~A. 

Proof: Let f :  A <~° --+ A and p < n a regular cardinal. It is easy to find 

a e P~A n el S such tha t  [a I = [ a n  n I and cof(la n n[) = p and, if col(A) > n, 

col(a) = p (if cof(A) < n, then for club many a E P~A, col(a) = eof(A)). Hence 
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S~ N T',~A is s t a t ionary  (take p = col(A) if cof(/k) < n). If cof(A) < n then  

S:~ N P~A is co-s ta t ionary  in P~,~ take p ¢ cof(A). Finally, assume cof(A) > n. 

The  idea for the following a rgument  is from [Bau91]. Let (~ = col(A). Note t ha t  

{a E "P,h I cof(a)  = cof(a  N 5)} is club, so we may  assume f witnesses this. 

Let  f :  5<~ --+ d be such tha t  a E cl[  implies cls(a  ) n (~ = a. Define g: ~ -~ (~ 

by g(a) = s u p ( c l / ( a  + 1)). Now choose a E Pc5  such tha t  a E cl],  a E clg, 

[a] = l a N a i ,  c o f ( l a N n ] )  = R 1 ,  cof(a) = R 1 ,  and n E a .  Let a0 = a N n .  Given 

a~, let /3 E a \ sup(a~) ,  and a~+l = clf(a~ U {/4}). Let a~ = U~E~o a~. Then  

a , , N t ~ =  a N n ,  a~ E cly a n d c o f ( a ~ )  = w .  Let b = c l f ( a , o ) .  T h e n b E  clf and 

cof(Ib]) = R1 and eof(b) = w. Hence S), N Pc/~ is co-s ta t ionary  in 7)ch. I 

COROLLARY 2.9: For n, ;~ as above, the club filter on 79ch is not saturated. 

Remark: Assume cof(A) = ~ (~ regular limit). Then  for club m a n y  a E P,~A, 

col(a)  = cof(a  N ~c). So S:~ is club in the (s tat ionary)  set 

{a E 7),~At }a} = ]aN ~t} 

and is non-s ta t ionary  in the (possibly non-s ta t ionary)  set 

{a E V,~)q lal = lan  ~1+}. 

The above method does not handle the cases: (i) ~ = N1, (ii) ~ = p+ and 

cof(A) = cof(p),  and (iii) ~ regular limit and cof(A) = n. Case (ii) is handled in 

the following: 

THEOREM 2.10: Assume col(A) < n and n _> R2. Then the club filter on P~A is 

not saturated. 

Proof'. Let (f~ : a E )~+) be a scale on A (see Definition 3.3, so each f~ E 

II~<cof(:,)p~, where the p~'s are an increasing sequence of regular cardinals  cofinal 

in A with ~ < P0). Given a E ;°~/k define ga E Ilp~ by ga(4) = sup (aNp~)  and let 

~r(a) = least a E A + such tha t  ga _<* f~. Let ~- be a filter on P,~A. Let 0 > >  A, 

and assume 9Co is a filter on T)~Ho project ing to $-. Let 

E = { b - ~ H o [ b E P c H o & ( f ~ : a E A  +} E b &  

cof(A) C_ b & (p~: 4 < cof(,~)) E b}. 

CLAIM 1: I f  bE E then sup(bA h +) _< 7r(bn A). 

Suppose  not. Let b E E with sup(bAh +) > 7r(bNA) = d e f  4. Say/3 E bAh + with 

fl > 4. But  f~ *> f~ *>_ gbn),. Therefore  3~? < cof(h) such tha t  f~(rl) > f~(v)  > 
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gbn~(~)- But  cof(A) C b, fl E b, and ( f ~ :  a E A +) E b. Therefore  f~(~]) E b N p~. 

But  gbn~(~/) = sup(b N p~). Contradic t ion 

Let  T E $-e and define ST(a ) - - - -  sup{sup(bMA+)I bMA -- a & b E T}.  Note  t ha t  

ST is defined on a set in .~ ( the project ion o f T ) ,  i f T  C T '  then  ST(a) <_ S T, (a), 

and if T C_ E then  ST(a) < 7r(a). 

CLAIM 2: Given fl E A + and T C E with T E jz~, on an Y= measure one set we 

have ~ < ST(a) <_ 7r(a) < A + 

We al ready have tha t  ST is defined on an ~ measure  one set and  ST(a) <_ 

r ( a )  < fl +. Let  fl E A + and let T '  {b E T[ fl E b}. Then  T '  = E ~e  and (on the  

project ion of T') S T, (a) > fl and S T, (a) <<_ ST(a). 

CLAIM 3: Assume f :  P~A -+ A + is such that I t-y+[f ] = s u p f ' A  +. Then there is 

a T E Y:o such that (VT' C T)  T '  E 5we on a set  in jz, ST ' (a) = f(a).  

On an ~e  measure  one set f (bNA) _> sup(bMA +) (Knot ,  then  there  is a S E 9 v+  

S '  such t ha t  f(b ¢3 A) < sup(b M A+), so on some E $-+, f(b M A) < ~ (~ E A + is 

fixed). Pro jec t ing  to $" we get S E 5 r +  such tha t  f(b) < • on S. Contradic t ion. )  

So let T E $'0 such tha t  T C_ E and (Vb E T) f (b;TA)  >_ s u p ( b f ~ A + ) .  

Therefore ,  on an 5 r measure  one set, f (a) >_ ST(a). Suppose on S E 9 v+ we have 

f (a) > ST(a). Then  since It-[f] = s u p j " A  +, there  exists S c_ S and 71 < A + 

such tha t  on S, ST(a) < ~. This  contradicts  Cla im 2. Finally, assume T '  C T.  

Then  on an 5 r measure  one set S T ,(a) < ST(a) = f(a).  Again by Cla im 2, 

S T, (a) = f(a)  on an 5 r measure  one set. 

CLAIM 4: Assume  p < ~ is regular, p ~ cof(A), T C_ P~He is stationary, T C_ E, 

and Va E T, a is IA (internally approachable) of length p (this means there 

is an increasing, continuous sequence {he : ~ < p} where each a~ E E ,  Vp' < 

p (a~:  ~ < p'} E a, and a = U~<;  a~ - -  see [FMS88]). Let T be the projection of 

T to P~A. Then/or  a/1 a E T,  ST(a) = ~r(a) and cof(~r(a)) -- p. 

T h e  idea for the proof  of Claim 4 comes f rom [FM97]. Let  b E T,  and 

(b(, : a < p> be a witness to IA of length p. We may  assume (Va E p) b~ E b~+l. 

Let  a = b M A .  I t  is enough to see tha t  s u p ( b M A  +) = lr(a). (Note t ha t  

cof(sup(b A ,k+)) = p.) Given a < p we have (Vf E b~) f < gb~ (everywhere)  

and,  since gb~ E ha+l,  there  is ~,~ E b~+l such tha t  gb~ _<* f ~ .  By Cla im 1, 

7r(a) > sup(b M A+). So let 6 = sup(b ¢) A +) and we will show gb <<_* f~. For all 

a < p, gb~ <--* f w  <* f~" Since p ¢ col(A), 3A c_ p unbounded  a n d ,  < cof(A) 

such t ha t  Va E A and V~ E (L,, col(A)) gb~ (~) < f~ (~). But  gb(~) = supaEA gb~ (~) 

and so gb(() <-- f~(~). 
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Let p < ~ be regular, p ~ cof(A). Let T -- {b EE[  b is IA of length p}. 

CLAIM 5: T is stationary. 

Let f:  H <°~ --+ Ho. Let b0 E E N clf. If ~ < p is limit let b~ = U~<~b~. Given 

b~, let b~+l E E n c l f  such that b ~ U { ( b ~ : e ~ } }  E b~+l. So b = U~<pb~ E 

E M c l  S. To see b is  IA of length p we just needY~ < p ( b ~ : ( ~ E ( )  E b. But 

( b ~ : a E ~ } E b ~ + l  Cb.  

Finally, let ~0 = CF I T. ~" is gotten by projection. We will show that ~" is not 

saturated, and therefore by Corollary 1.2 the club filter on P~A is not saturated. 

For a contradiction, assume $" is saturated. So there is an f :  P~A --+ A+ such 

that Ib[f] = supj"A +, and on a set in 5 r ,  cof(f(a))  > p (otherwise we could 

force to have cof([f]) <_ p in the ultrapower--so this collapses A+). 

By Claim 3, 3R E ~0 such that for any R' C R (R' E ~0) on a set in 9 r ,  

S R, (a) = f (a) .  So on a set in 9 r ,  SRnT(a)  ---- f (a) .  But R M T is a set as in 

Claim 4. Hence on a set in ~" (the projection of R M T) SRnT(a)  -~ 7r(a) and 

cof(zc(a)) -- p. Therefore on a set in 9 v, cof(f(a))  = p. This contradiction 

completes the proof. I 

QUESTION: In the above proof, jc is the projection of CF I T. Is Y: the club 

filter restricted to a stationary set? 

We conclude this section with three previously known theorems. 

THEOREM 2.11 ([GS97]): For all ~ > R1, the club filter on ~ is not saturated. In 

fact, for any regular p with p+ < ~, CF I {a < ~[ cof(a) = p} is not saturated. 

COROLLARY 2.12: For all regular ~ and all regular A >_ R2, the club filter on 

7)~A is not saturated. 

Proo~ Define g: P~A --+ A by g(a) = sup(a). Suppose S C A is stationary 

and (Va E S) cof(a) < n. Then g - l ( S )  is stationary (let f :  A <~ -+ A and 

choose a E S such that  a is closed under f .  Now build a E 7~A N clf such 

that  sup(a) = a).  Also, if S C_ T~A is stationary, then g"S  C_ A is stationary (if 

f :  A <~ --+ A, define h(a) = c l f ( a +  1)). If a E SNclh, then sup(a) is closed under 

f .  The result now follows from Theorem [2.11]. I 

THEOREM 2.13 ([DM93]): IrA > 2 <~ then o~,~ holds. Hence the club filter on 

7)~A is not saturated. 
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TtIEOREM 2.14 ([BT82]): For any A > ~1, PR~/~ can be split into 2 ~° many  

disjoint stationary sets. 

Remark: Piecing everything together,  we have the following part ia l  results 

towards  the theorem of Foreman and Magidor: The  club filter on 7~A is not 

sa tu ra ted  unless 

1. ~. = A = I~ (consistent).  

2. a = Nt, A -- 2 ~ is singular. 

3. a is l imit and col(A) = ~; and 2 <'~ >_ A. 

3. C a r d i n a l  p r e s e r v i n g  t o  p r e - s a t u r a t i o n  

A filter 5 on 7)(A) is w e a k l y  p r e - s a t u r a t e d  if 5 c is precipi tous and 

IF-~:+" A + is preserved".  The  filter ~- is called c a r d i n a l  p r e s e r v i n g  if 

I~-j:+" A + is preserved".  If I)c+[ = A +, then pre-sa tura ted ,  weakly p re - sa tu ra ted  

and cardinal  preserving are all equivalent. It  is not known if they are equivalent 

in general. 

We use a number  of known combinator ia l  principles to get tha t  the club filter 

cannot  have these s t rong properties.  For the case )~ regular, the solution is 

c o m p l e t e - - t h e  club filter on P~A is not cardinal preserving unless g : R1 or 

= A is weakly inaccessible (and bo th  these cases are consistent).  

Definition 3.1: Sh(A) means  for any ~ E V, if V ~ ~ cof(A) ~ cof(lAI), then V ~ 

collapses A +. 

Definition 3.2: AD(A) means  3{a~ : c~ E A+} such tha t  each as  is an unbounded  

subset  of A and Va E A+3f , :  a -+ A such tha t  ]~1 < ~2 < c~ implies 

Definition 3.3: Suppose A is singular. A scale on ~ is an increasing sequence 

of regular  cardinal  (p~ : { E col(A)} cofinal in A, and a sequence (f~ : a E A +) 

such tha t  for each a ,  f~ E [l(Ecof(.X)p(, Ol < o~' implies f~ <* f~,,  and g f  E 

II~Ecof(;gp( 3c~ E A + such tha t  f <* f , .  We will assume (p~ : a  E cof(A)} is 

discontinuous everywhere  and Va E A + V{ E cof(A) f~(~) > sup{p~, I ~' < ~}. An 

ordinal  7 is g o o d  for (f~ : a E A +} if 3A C_ 3' unbounded and a < col(A) such 

tha t  g a  < a '  f rom A and u E (cr, eof(A)) f~(L,) < f~,(~,). The  scale is g o o d  if 

3 club C C_ A+ such tha t  Va E C if col (a)  > col(A), then a is good for the scale. 

GS(A) means  there is a good scale on A. 

Remarks: 

1. A regular  implies AD(A). 
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2. AD(A)implies Sh(A). [She82] 

3. GS(A} and A singular implies Sh(,~). [Cum97] 

4. E]~, implies AD(A). [CFM] 

5. It is not known if 3k~Sh(),) is consistent (it is consistent to have 3~[~ AD(X) 

and ~ GS(a)]). 

6. Shelah has proved that there is a scale for all singular k and that the set of 

good points is stationary for all scales ([HJS86]; also see [Cum97]). Shelah 

also gives an example of a model with no good scale ([HJS86]). Another 

example of a model with no good scale is given by Foreman and Magidor 

in [FM97], where they show a version of Chang's Conjecture, (R~+l, R~) -+ 

(R1, R0), implies there is no good scale on R~o. 

The proof of the following theorem is essentially the same as Theorem 2.3. 

THEOREM 3.4: Assume Sh(A) and .7" is a pre-saturated filter on P(A). Then 

S x E Y .  

TttEOREM 3.5: Suppose .7" is a cardinal preserving filter on ~P(X) and AD(A). 

Then S~ C .7". 

Proof" We will use Shelah's method of proof of Theorem 2.1 (page 440, [She82]). 

Let (as : a E k+), (f~ : a E A +} witness AD(A). Suppose S~ ¢ b c. Let G C Y+ 

be generic with ~'(A) \ Sa E G. So we get j: V ~ (M, E)  c_ V[G] with k + c M 

(we collapse the well-ibunded part of M), and 7)v(k) c_ M, and M ~ cof(A) ¢ 

cof(Ikl). Work in M: we write k = U~e~of(tal) A~ where the A~'s are increasing, 

continuous and IA~I < IAI. So ira c )~ is unbounded, then 3a  < cof(I;~l) such that 

a N As is unbounded in A. Now work in V[G]: we have gc~ E A + 3/3 E cof(Ik[) M 

such that  a~ N A n is unbounded in )~. So there is a fixed/3o and an unbounded 

.4C_ ~+ such that (Vc, E A) asNA~o is unbounded in ~. Let oe0 E , 4 b e s u c h  

that A N c~0 has order type k. Note that (am : a E c~0},Apo, and f~o are all in 

M. Now work in M: The set 

{(as O Azo) \ f~o(c~)l a < a0 & as O AZo is unbounded in A} 

is a family of I/~l many non-empty pairwise disjoint subsets of AZo. But IAZol < 

Ixt, contradiction. | 

As in section 2, these two theorems have the following three corollaries: 

COROLLARY 3.6: Assume AD(A) /Sh(A)], ~ = p+, eof(A) < K,, and eof(A) 

cof(p). Then there is no cardinal preserving [pre-saturated] filter on P,~A. 
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COROLLARY 3.7: Assume AD(A) /Sh(A)], ~ = p+ > R2 and cof(A) > ~. Then 

the club filter on PaA is not cardinal preserving [we-saturated]. 

COROLLARY 3.8: Assume AD(A) /Sh(A)], ~ is a regular limit cardinal and 

cof(A) ~ ~. Then the club filter on 7)~A is not cardinal preserving [we-saturated]. 

THEOREM 3.9: Assume cof(A) < ~ and there is a good scale on A. Then there 

is no weakly pre-saturated filter on P,A.  

Proo~ Suppose not. So there is j: V --+ M C_ V[G] such that  A + is still a 

cardinal of V[G], M is well-founded, T'v(A) c M, and cp(j) = n with j(t¢) > A. 

Let ( f m : a E A + )  be a g o o d  scale on A. So there is a c l u b  C C A+ such that  

a E C and col(a)  > cof(A) implies a is good for (fro : a E A+). Let p = s u p j ' A  + 

Note that  p < j(A+) (see IBM97]) and so p E j (C) .  Since V[G] ~ cof(p) = A+, 

M ~ cof(p) > A+ > cof(A). So in M, there is an A C_ p such that  sup(A) = p and 

30. < cof(A) such that  a l  < a2 from A and u E (0.,cof(A)) implies j ( f )ml(u)  < 

J(f)~2 (u). Now work in V[G] and repeat an argument from [Cum97]. For each 

a in A+ choose tim < 5m from A and ~'m E A+ such that/3m < j(~/m) < 5~. Do this 

SO OL 1 • O~ 2 implies 5~ 1 < fl~2 and sup{13~[ a E A + } = p. For each a E A + 30-m < 

cof(A) such that  j ( f ) ~  < j ( f ) j ( ~ )  < j ( f ) ~  beyond o-re. Since A + is regular 

there is an unbounded B C_ A + and fixed O" 1 such that  Va E B 0-m = 0-1. Let 

---- max(0., 0-1). But  then if o/1 • o~ 2 are from B, then f ' r~  ( a +  1) < f ~ 2  ( a +  1). 

Hence A + must  be collapsed in V[G]. I 

Precipitousness is ruled out under certain conditions by the following theorem 

of Matsubara  and Shioya. 

THEOREM 3.10 ([MS]): IfA<~ = 2 ~ and 2 <~ < 2 ~, then the club filter on "P~A 

is nowhere precipitous. 

[Bau91] 

[BT82] 

[BTW77] 
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